Genetic control of inflorescence architecture in legumes
نویسندگان
چکیده
The architecture of the inflorescence, the shoot system that bears the flowers, is a main component of the huge diversity of forms found in flowering plants. Inflorescence architecture has also a strong impact on the production of fruits and seeds, and on crop management, two highly relevant agronomical traits. Elucidating the genetic networks that control inflorescence development, and how they vary between different species, is essential to understanding the evolution of plant form and to being able to breed key architectural traits in crop species. Inflorescence architecture depends on the identity and activity of the meristems in the inflorescence apex, which determines when flowers are formed, how many are produced and their relative position in the inflorescence axis. Arabidopsis thaliana, where the genetic control of inflorescence development is best known, has a simple inflorescence, where the primary inflorescence meristem directly produces the flowers, which are thus borne in the main inflorescence axis. In contrast, legumes represent a more complex inflorescence type, the compound inflorescence, where flowers are not directly borne in the main inflorescence axis but, instead, they are formed by secondary or higher order inflorescence meristems. Studies in model legumes such as pea (Pisum sativum) or Medicago truncatula have led to a rather good knowledge of the genetic control of the development of the legume compound inflorescence. In addition, the increasing availability of genetic and genomic tools for legumes is allowing to rapidly extending this knowledge to other grain legume crops. This review aims to describe the current knowledge of the genetic network controlling inflorescence development in legumes. It also discusses how the combination of this knowledge with the use of emerging genomic tools and resources may allow rapid advances in the breeding of grain legume crops.
منابع مشابه
Distinct Genetic Architectures for Male and Female Inflorescence Traits of Maize
We compared the genetic architecture of thirteen maize morphological traits in a large population of recombinant inbred lines. Four traits from the male inflorescence (tassel) and three traits from the female inflorescence (ear) were measured and studied using linkage and genome-wide association analyses and compared to three flowering and three leaf traits previously studied in the same popula...
متن کاملEvolution and development of inflorescence architectures.
To understand the constraints on biological diversity, we analyzed how selection and development interact to control the evolution of inflorescences, the branching structures that bear flowers. We show that a single developmental model accounts for the restricted range of inflorescence types observed in nature and that this model is supported by molecular genetic studies. The model predicts ass...
متن کاملGenetic Dissection of the Morphological Evolution of Maize
Maize (Zea mays ssp. mays) and its wild progenitor, teosinte (Z. mays ssp. parviglumis) differ dramatically in inflorescence and plant architecture despite the fact that their evolutionary divergence occurred within the past 10,000 years or less. To elucidate the genetic control of the morphological differences between maize and teosinte, my colleague and I employed quantitative trait locus map...
متن کاملThe genetic basis for inflorescence variation between foxtail and green millet (poaceae).
Grass species differ in many aspects of inflorescence architecture, but in most cases the genetic basis of the morphological difference is unknown. To investigate the genes underlying the morphology in one such instance, we undertook a developmental and QTL analysis of inflorescence differences between the cereal grain foxtail millet and its presumed progenitor green millet. Inflorescence diffe...
متن کاملQuantitative trait loci for inflorescence development in Arabidopsis thaliana.
Variation in inflorescence development patterns is a central factor in the evolutionary ecology of plants. The genetic architectures of 13 traits associated with inflorescence developmental timing, architecture, rosette morphology, and fitness were investigated in Arabidopsis thaliana, a model plant system. There is substantial naturally occurring genetic variation for inflorescence development...
متن کامل